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We experimentally study the spreading of a small volume of silicon oil down a vertical plane with small
Bond number. The initial condition is characterized by a horizontal long fluid strip with cross sectional areaA
and width w0. We find that the experiments are characterized by a unique nondimensional parameter,R
~w0

4/ sa2Ad, wherea is the capillary length. An empirical criterium to estimate the onset of the contact line
instability is established. The later rivulet formation at the contact line leads to a pattern which is characterized
by a dominant wavelength. We find that this wavelength is approximately proportional toR−1/4.
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The coating of a solid surface by a thin liquid film is a
process of basic research and technical interest. When a vol-
ume of fluid is released on an inclined plane, the gravity
drives the spreading and the liquid uniformly coats the sur-
face. Nevertheless, the process is affected by the growth of
corrugations at the contact line. These corrugations form a
set of channels or “fingers” in the downslope direction that
guides the fluid, leaving dry patches at both sides until the
fluid eventually covers the whole surface.

After the pioneer work of Huppert[1], other authors have
studied the instability of the contact line under complete wet-
ting conditions[2–6]. All fluids employed in those experi-
ments(typically, silicon oils and glycerin) are very viscous,
so that the Reynolds number is very small. Their liquid vol-
umesV yield large values of the Bond numberB=shc/ad2,
where hc is the characteristic height of the fluid anda
=Îg /rg is the capillary length(g is the surface tension,r the
density, andg the gravity). If the initial condition is uniform
along the transverse direction of the incline, then the flows
can be characterized by the fluid cross sectionA=V/L,
whereL is the transverse extension.

In the experiments reported in the literature,A ranges
from 1 to 10 cm2. In this paper we shall present results from
experiments withA between 10−4 and 10−2 cm2, and whose
characteristic height is of some tens of microns, thus ensur-
ing small Bond numbers. As a consequence, the flows stud-
ied here are closer to the coating processes used in applica-
tions, and the outcome of the investigation is of particular
interest to this field. Furthermore, previous works consider
relatively small inclination anglesa, spanning the values
1° ,a,55°. Here we concentrate on flows on a vertical
planesa=90°d.

Recently[7] we have studied these flows by focusing on
(a) the comparison between experimental profiles and 1D
numerical simulations and(b) the prediction of the modal
growth rates by using a mixed analytical-numerical linear
model. Instead, the main goal of the present paper is to ex-
plore in detail the influence of the initial configuration and
discuss its importance on the stable spreading as well as on
the emerging pattern formation. This is done by performing a

parametric study on a much more complete series of experi-
ments which covers a larger range of areaA and widthw0.

Under the lubrication approximation, the heighthsx,y,td
obeys the equation

3m]th + g ¹ sh3 ¹ ¹2hd + rgssinad]xh
3

− rgscosad ¹ sh3 ¹ hd = 0, s1d

wherem is the viscosity,x-axis is in the downslope direction
and y is the cross-slope direction(horizontal). Huppert [1]
considers they-independent flow, and neglecting capillary
effects and the normal gravity force, he obtains a self similar
solution for the position of the front contact line(measured
from the rear contact line) as

wH = S9A2g sina

4n
D1/3

t1/3, s2d

wheren=m /r is the kinematic viscosity. We will see below
that this solution is appropriate only for cases with large
Bond numbers.

Our experiment is carried out by placing a thin(few
tenths of mm) silicon oil filament[PDMS,n=20 St(Stokes)
andr=0.96 g/cm3] on a glass plate. The goal is to achieve a
uniform initial condition with straight and parallel contact
lines. The dimensions of the glass plate is 20 cm in the
downslope direction and 8.7 cm in the transverse direction.
The filament is generated from the draining of PDMS out of
a nozzle at the base of a container. Both the height of the
fluid in the container and the diameter of the nozzle deter-
mine the filament cross section. A mechanical device allows
the filament to be captured by the substrate, which is then
conveniently rotated in such a way that the filament is left on
horizontal position[7].

The flow evolution is monitored by means of two optical
techniques. The first one is based on the use of an anamor-
phic lens[8] that shows on a screen a light curve displaying
the first derivative,]h/]x, of the height profile,hsx,td, which
is then obtained by integration. The second one is a schlieren
technique that gives a two-dimensional view of the spread-
ing, such as the shape of both the rear and leading contact
lines. More details can be found in Ref.[7].

Our experiments show that the initial shape of the cross
section of the filament is very like a cylindrical cap(see also*Electronic address: jgomba@exa.unicen.edu.ar
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Ref. [7]). Thus, the apex thicknessh0 is given by

h0 =
A

Iw0
, s3d

wherew0 is the initial width of the filament andI is theshape
factor (in this case,I =2/3). SinceA is determined by the
conditions at the outlet of the container, we use the following
procedure to obtain differentw0’s for a fixedA: the substrate
with the fluid strip is left in horizontal position for a few
minutes before it is set vertically. Measurements of the thick-
ness profile with the above mentioned anamorphic lens show
that the cross section remains as a cylindrical cap. The pa-
rameters of the initial conditions of six experiments are de-
tailed in Table I. Each experiment is characterized byA and
w0.

We define the width of the fluid strip asw=xf −xr, where
xf and xr are the positions of the frontal and rear contact
lines, respectively(except for the very early stages,xr does
not vary appreciably during the spreading). The time evolu-
tion of wstd, registered from early times till the onset of the
contact line instability, is shown in Fig. 1 by employing the

same scaling as used in Fig. 3 of Ref.[1]. In that work,
Huppert shows that Eq.(2) (solid line in Fig. 1) is in very
good agreement with his experiments. However, this law
overestimates the asymptotic front position in our experi-
ments and does not give the correct time dependence. Only
at the very end of the stable spreading, the front seems to
approach thet1/3 law as shown by the dashed lines in Fig. 1.
The agreement of Eq.(2) with Huppert’s large area experi-
ments is due to the fact that capillary effects are negligible.
HereA is 10−3 to 10−4 times smaller, so that these effects are
importantsB!1d and must be taken into account. It is well
known that the contact line instability is related with the
bump induced by surface tension at the front[2,9]. For large
values ofB, such as in Huppert’s experiments, the front pre-
sents a rolling motion[10,11], and consequently this implies
a different front dynamic. A feature of the experiments re-
ported here is that the onset of the instability occurs before
the spreading can reach an asymptotic self-similar regime(an
analogous behavior was reported in spin coating experiments
[12]). Thus the description of the previous stable stage cor-
responds to an initial value problem.

Let us consider now Eq.(1) in dimensionless form. If we
takexcs=ycd, hc and tc as scales of the problem, Eq.(1) can
be written as

3m

g

xc
4

hc
3tc

]t̃h̃ + ¹̃sh̃3¹̃¹̃2h̃d +
rg sina

g

xc
3

hc
]x̃h̃

3

−
rg cosaxc

2

g
¹̃sh̃3¹̃h̃d = 0, s4d

where the tilde indicates dimensionless quantities or opera-
tors. The normal gravity terms~cosad can be neglected in
comparison with the parallel gravity terms~sinad provided
the inclination angle satisfies

tana @ r ; hc/xc, s5d

wherer is the characteristic aspect ratio. Under this assump-
tion and defining

xc = w0, hc = h0, tc =
3m

g

w0
4

h0
3 , s6d

Eq. (4) becomes

]t̃h̃ + ¹̃sh̃3¹̃¹̃2h̃d + R]x̃h̃
3 = 0, s7d

where

R= sIw0
4 sinad/sa2Ad. s8d

Thus the flow evolution is characterized by a single dimen-
sionless parameterR, which gives the ratio between gravity
and capillary forces. Note that Eq.(6) implies that the di-
mensionless initial values of width and height are always
equal to unity.

The effects of the parametersA andw0 on the flow evo-
lution in the stable stage are shown in Fig. 2. It is usually

TABLE I. List of experiments for severalA’s and w0’s. The
smallness of the initial aspect ratior =h0/w0 ensures the validity of
the lubrication approximation from the very beginning of the ex-
periment. The dimensionless parameterR is defined in Eq.(8).

Expt. A s10−4 cm2d w0 s10−2 cmd r (units of 10−2) R

E1 4.7 8.83 9.00 4.1

E2 3.6 8.58 7.30 4.8

E3 10.0 12.98 8.90 9.0

E4 6.7 12.86 6.08 12.9

E5 96.0 31.45 14.56 32.3

E6 7.2 24.07 1.86 148.0

FIG. 1. Time evolution of the width of the fluid strip,w, scaled
as suggested by Huppert[1]. The solid line is given by Eq.(2), and
the dashed and dotted-dashed lines correspond to the same equation
with different prefactors, withC=9gA1/2/ s4nd. The time range is
the same as used in Fig. 3 of Ref.[1].
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accepted that largerA’s imply faster spreadings. This is pre-
cisely what happens in experimentsE1 and E2 with areas
A1=4.7310−4 cm2 and 3.6310−4 cm2, respectively, which
have practically the same initial widthw0. Nevertheless, the
experimentE4, which has an area smaller thanE6, evolves
faster thanE6. These results suggest that both the cross sec-
tion A and the initial widthw0 determine the dynamic of the
evolution. In fact, for the same area, greater values ofw0
imply lower dynamic contact angles, and according to Tan-
ner’s law, smaller advancing velocities.

In Fig. 3 we show the evolution of the spreadings by
using the scaling defined in Eq.(6). Notice thatR constitutes
an ordering parameter since, in dimensionless units, the time
evolution is faster for largerR’s. This can be understood
considering the increase ofR as an effective increase of the
downslope component of gravity.

Up to our knowledge, there is in the literature no analyti-
cal solution of this problem including capillary effects. An
elaboration of our experimental data shows that the position

of the front (contact line) measured from its initial position
can be described by

xf/w0 = kt̃u, s9d

where the prefactork and the exponentu are only functions
of R. In Fig. 4 we present power law fittings forE2, E4, and
E6. The analysis of all the experiments shows that whenR
varies from 4 to 148,k increase from 0.8 to 30, whereas the
exponentu growths slowly from 0.47 to 0.95. Finally, the
stable stage ends when the dimensionless widthw/w0 is
about 2.7±.6. This result shows another difference with Hup-
pert’s experiments, where the critical widthwH

c ~A1/2.
When the unstable stage is reached, the contact line de-

velops a pattern that can be described by its spatial discrete
Fourier transform[7]. The dependence of the dominant
wavelength of the spectrum,l, with the parameterR is
shown in Fig. 5, where the straight line represents the power

FIG. 2. Time evolution of the width of the spreading,w. The
inset is a magnification for very early times, which allows us to see
caseE5.

FIG. 3. Evolution of the width of the spreadingw, using the
scaling defined in Eq.(6). The spreading rate increases for increas-
ing R (see Table I).

FIG. 4. Frontline evolution for three experiments:E2 (squares),
E4 (triangle down), andE6 (triangle up). The dotted lines are given
by Eq.(9). The beginning of the instability is shown by the splitting
of the data, which then correspond to the positions of a fingertip and
a trough.

FIG. 5. Dominant wavelength in the Fourier spectrum of the
unstable contact linel in units of w0. The solid line is the power
law given by Eq.(10).
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law relationship:

l/w0 = s8.34 ± 0.35dR−0.27±0.022. s10d

SinceR~w0
4 [see Eq.(8)] and the exponent is close to 1/4,

the initial widthw0 cancels out. This implies that the dimen-
sional value ofl is practically independent onw0 and it is
basically determined by the areaA.

Huppert[1] characterizes the unstable contact line pattern
in terms of the mean distance between fingers, namelykll. It
is expected that the mean wavelengthkll be comparable
with the dominant wavelengthl. He summarizes his experi-
mental results with the expression

kll = 7.5sA1/2a2/sinad1/3. s11d

Note that the dependence ofkll on A has exponent 1/6
instead of 0.27 as given by Eq.(10). This shows that the
spreadings with small Bond number correspond to a different
regime, possibly because the rolling motion is completely
absent.

A key point in the analysis is that Eq.(7) establishes that
the solution of the problem depends only onR [see Eq.(8)].
Thus, even though all the experiments reported here have
been carried out on a vertical substratesa=p /2d, it is pos-
sible to infer the general dependence ofl on the inclination
anglea. As a consequence, under the assumption given by
Eq. (5), l must depend on sina with the same exponent as it
depends onA. This points out another difference with the
large cross section experiments, where the exponents onA

and sina are different[see Eq.(11)]. Analogously, even if
we employ here only cylindrical cap shapes for the cross
section of the initial condition, a power law dependence onI
with an exponent equal to minus the exponent onA is ex-
pected, i.e.,<−0.27.

In summary, we experimentally study microfluidic spread-
ings on vertical substrates in which, contrary to most of the
previous experiments in the literature, capillary effects are
significant from the very beginning of the process. We pro-
duce controllable and reproducible initial conditions, and
study the evolution of the early stable stage. Interestingly,
experiments with different areas and widths can be studied
by employing a single dimensionless parameterR. Among
other results, this analysis shows that the critical contact line
position at the onset of the instability is proportional to the
width w0 and it is independent of the areaA. In the unstable
stage, the contact line pattern is spatially characterized by its
dominant wavelengthl. We find thatl depends on the cross
section areaA with an exponent higher than previously re-
ported in experiments performed with much larger areas.
Also, we find thatl is practically independent on the initial
width of the fluid,w0.
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